

Wind Visualization at Xcel Energy

Annie Rhoads
Lead Power System Trader
Xcel Energy
September 11, 2012

Program

- Background on Xcel Energy
- Introduce Power Operations & Trading at Xcel Energy
- Examine corporate wide wind forecasting system
- Explore several decision support tools and displays
 - Northern States Power (NSP) –MISO Market
 - Southwestern Public Service (SPS) SPP Market
 - Public Service Colorado (PSCo)

Company Profile

2012 Annualized Dividend = \$1.08 per share 2012 EPS Guidance = \$1.75 - \$1.85* per share **Fully Regulated**

Operate in 8 States

Combination Utility

Electric 89% of cont. ops Gas 11% of cont. ops

Customers

3.4 million electric 1.9 million gas

2011 Financial Statistics

Net Income: \$841 million

EPS: \$1.72

Annualized dividend: \$1.04

Assets: \$29.5 billion Equity ratio: 46%

^{*}Forecasted to be in the lower half of the range

Responsibilities

- All four Xcel operating companies are managed in Denver on our trading floor
 - System reliability/safety is our number one responsibility
 - Least cost generation dispatch solution
 - Wholesale markets

Power Operations

- System Reliability
- Plant outage coordination
- Balance load and generation
- Least cost dispatch of resources
- Customer load, wind production, and fuel burn forecasting

- Market buy/sell signals
- Communication with centralized markets
- Demand side management activation
- Daily post analysis
- Generation modeling
- Reporting to regulators and centralized markets

Energy Trading

- Make electric purchases below our internal cost of generation
- Make electric sales when we have surplus generation resources
 - 90% of the profits are returned to customers in Colorado
- Develop and execute both short and long term electric and natural gas hedging strategies
- Manage renewable energy credits (RECs), emissions allowances

Optimization Inputs for Models Used Across Commercial Operations

- Load Forecast
- Unit Characteristics
 - Performance Monitoring Program
- Fuel
 - Mix of short and long term pricing
- Wind Forecast
 - Largest source of uncertainty
 - As Xcel integrates more wind, operational impacts increase

Xcel Power Supply Mix

Energy by fuel source, during 2011

- Total Wind Energy at Xcel 10%
 - **Energy Source by Operating Company during 2011:**
 - NSP 10%
 - PSCo 13%
 - SPS -- 8%
 - Xcel is adding nearly 1,000
 MW wind capacity during 2012
 - Xcel will have 5,000 MW wind capacity by end of 2012

Wind Forecasting Improvements

- National Center for Atmospheric Research (NCAR) wind model implemented late 2009 and early 2010
 - 28% reduction in forecast error across the Xcel operating systems
 - \$7 million/year in dispatch savings
- NCAR system inputs
 - Meteorological data
 - Recently added European weather model
 - Turbine-level data
 - Staff meteorologist insight
 - Icing, planned turbine maintenance, transmission outages
- NCAR system output
 - .csv files containing 15 minute and 1 hour forecasts
 - Graphical interface extensively used by real time operators
 - Weather-related snapshots for the staff meteorologists

NCAR Graphical Interface

Wind Visualization Tools and Displays

- Pi Process Book, a graphical interface to the OSIsoft PI System
 - Dynamic and interactive displays
- EMS Customization
- Excel
 - Interface with Pi System using Pi DataLink
 - Decision support tools
 - Ad hoc analysis

Display Needs Vary by Operating Company

- Wind Forecasting system (NCAR) is used across all three systems
- However each operating company has unique challenges with wind integration
 - Dissimilar regulatory frameworks
 - Operating in different markets
 - Dissimilar geographical areas
- Customized tools and displays required

PSCo –Wind Overspeed Issues

- At very high wind speeds most wind turbines cease power generation and shut down.
 - Display to warn operator of overspeed conditions
 - Operator recognizes when cut-outs may occur
 - Prepare to commit offline unit or manually dispatch other units in response
 - NCAR forecast is crucial in evaluation of whether to commit units

PSCo – Overspeed Warning Display

PSCo – Wind Ramp Events

- Strong Wind Ramps occur often in PSCo
 - Lack of geographic diversity among wind farms
- Reliability concern for PSCo
 - Lack of RTO/ISO to absorb wind ramps
 - Potential negative impact on the interconnection frequency and poor CPS scores
 - Displays to show operator ramping situation
 - Commitment or manual dispatch other resources
 - Lack of displays predicting ramping events

PSCo – ACE during Wind Push

Wind Challenges -- NSP Operating System

- NSP has fewer reliability concerns related to wind, relative to PSCo, due to NSP's participation in MISO market
 - Excess wind generation typically absorbed by market
- Nonetheless, wind management in NSP is a challenge
 - Managing wind around transmission constraints
 - Curtailments for economics during times of negative Locational Marginal Price (LMP)
- Understanding complexities of MISO charge types
 - Unexpected charges on Dispatchable Intermittent Resources (DIR) type units

NSP Display – at a glance summary

NSP – Managing Wind for Transmission Constraints

NSP – Performing Wind Curtailments

- Wind with set point control can be curtailed through EMS
- Wind without set point control requires manual curtailment via phone call
 - Ongoing projects for set point control where cost-justified

NSP - Dispatchable Intermittent Resources (DIR)

- MISO Created DIR unit type June 2011
- Wind must register as DIR type beginning March 2013
 - DIR units can participate in the real time energy market
 - Eligible for Day Ahead Revenue Sufficiency payments
- Set Point Control for DIR wind is ideal
 - Economic Curtailment is automatic based on value of wind output in the market
 - Requires EMS enhancements to support DIR set point control logic

NSP – Dataflow: Set Point Control Logic for DIR

NSP – Set Point Control Logic for DIR

- Current park potential sent to MISO as 5 minute forecast
- Operator can adjust 5 minute forecast via EMS DIR display
 - Override during ramping events
 - High limit adjustment for local transmission constraints
- MISO solves for economic dispatch, respecting the 5 minute forecast as the high operating limit
 - NSP EMS processes the dispatch instruction
 - Set point sent to the wind farm
 - If MISO dispatch instruction = 5 minute forecast
 - Send high operating limit as set point
 - Avoids unnecessary wind curtailments
 - If MISO dispatch instruction < 5 minute forecast
 - MISO is trying to dispatch unit down for economics
 - Send dispatch instruction value as set point

NSP – Excessive Energy at DIR Units

- PROBLEM during ramp events
 - DIR Wind locations received Failure to Follow Dispatch Flags (FFDF)
 - Excessive generation (EXE) is output exceeding 108% of dispatch target for 4 consecutive 5-minute intervals within an hour
 - Occurs during wind ramps when park potential is quickly increasing
 - EXE is paid lesser of LMP or unit offer price
 - NSP offer price is negative for farms receiving a Production Tax Credit (PTC)
 - Therefore NSP received a charge--rather than a payment--for the portion of the output that exceeded the EXE threshold

NSP - EXE Charges on DIR Units - Solution

- SOLUTION
 - Build displays to provide awareness when DIR output is exceeding set point
 - Provide five minute forecast override capability in EMS

NSP – DIR Display in Pi Process Book

NSP - DIR Display in Excel

NSP-EMS Functionality for DIR Units with Set Point Control

NSP – Revenue Sufficiency Guarantee (RSG) charge type

- MISO may commit additional units in real time for reliability purposes
 - These units receive RSG payment to cover production cost
 - Day ahead wind forecast error often the cause of shortages
 - Asset Owner causing the issue funds the payments
- MISO provided Notification Deadline (NDL)
 - OH + 4 is the open market hour for NDL submittal
 - NDL updates are optional
 - Market participants can resubmit forecasts for load and wind
 - Provide a better forecast for intraday reliability run
 - Potentially decrease RSG volume

MISO Notification Deadline (NDL)

Opportunities for Improvement in Displays

- NCAR GUI or ad-hoc displays could
 - Provide confidence interval based on more recent real time performance of NCAR
 - Currently based on 7 day rolling performance
 - Provide probability of particular size wind ramp events occurring at any given time
- Layer NCAR snapshots over maps of wind locations to spot trends at particular wind farms
- Quantify cost savings for wind forecast improvements for wind operating in RTO markets
 - investigate specific market charge types for unexpected consequences

Questions?

